Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical characterization of individual quantum dots

Identifieur interne : 000039 ( Russie/Analysis ); précédent : 000038; suivant : 000040

Optical characterization of individual quantum dots

Auteurs : RBID : Pascal:12-0262779

Descripteurs français

English descriptors

Abstract

Optical characterization of single quantum dots (QDs) by means of micro-photoluminescence (μPL) will be reviewed. Both QDs formed in the Stranski-Krastanov mode as well as dots in the apex of pyramidal structures will be presented. For InGaAs/GaAs dots, several excitonic features with different charge states will be demonstrated. By varying the magnitude of an external electric or magnetic field and/or the temperature, it has been demonstrated that the transportation of carriers is affected and accordingly the charge state of a single QD can be tuned. In addition, we have shown that the charge state of the QD can be controlled also by pure optical means, i.e. by altering the photo excitation conditions. Based on the experience of the developed InAs/GaAs QD system, similar methods have been applied on the InGaN/GaN QD system. The coupling of LO phonons to the QD emission is experimentally examined for both charged and neutral excitons in single InGaAs/GaAs QDs in the apex of pyramidal structures. It is shown that the positively charged exciton exhibits a significantly weaker LO phonon coupling in the μPL spectra than the neutral and negatively charged species, a fact, which is in consistency with model simulations performed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0262779

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical characterization of individual quantum dots</title>
<author>
<name sortKey="Holtz, P O" uniqKey="Holtz P">P. O. Holtz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IFM Material Physics, Linköping University</s1>
<s2>581 83 Linköping</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>581 83 Linköping</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hsu, C W" uniqKey="Hsu C">C. W. Hsu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IFM Material Physics, Linköping University</s1>
<s2>581 83 Linköping</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>581 83 Linköping</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Larsson, L A" uniqKey="Larsson L">L. A. Larsson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IFM Material Physics, Linköping University</s1>
<s2>581 83 Linköping</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>581 83 Linköping</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karlsson, K F" uniqKey="Karlsson K">K. F. Karlsson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IFM Material Physics, Linköping University</s1>
<s2>581 83 Linköping</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>581 83 Linköping</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dufaker, D" uniqKey="Dufaker D">D. Dufaker</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IFM Material Physics, Linköping University</s1>
<s2>581 83 Linköping</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>581 83 Linköping</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lundskog, A" uniqKey="Lundskog A">A. Lundskog</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IFM Material Physics, Linköping University</s1>
<s2>581 83 Linköping</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>581 83 Linköping</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Forsberg, U" uniqKey="Forsberg U">U. Forsberg</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IFM Material Physics, Linköping University</s1>
<s2>581 83 Linköping</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>581 83 Linköping</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Janzen, E" uniqKey="Janzen E">E. Janzen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IFM Material Physics, Linköping University</s1>
<s2>581 83 Linköping</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>581 83 Linköping</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moskalenko, E S" uniqKey="Moskalenko E">E. S. Moskalenko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IFM Material Physics, Linköping University</s1>
<s2>581 83 Linköping</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>581 83 Linköping</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, Polytechnicheskaya 26</s1>
<s2>194021 Saint Petersburg</s2>
<s3>RUS</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>194021 Saint Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dimastrodonato, V" uniqKey="Dimastrodonato V">V. Dimastrodonato</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Tyndall National Institute, University College Cork</s1>
<s3>IRL</s3>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Tyndall National Institute, University College Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mereni, L" uniqKey="Mereni L">L. Mereni</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Tyndall National Institute, University College Cork</s1>
<s3>IRL</s3>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Tyndall National Institute, University College Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pelucchi, E" uniqKey="Pelucchi E">E. Pelucchi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Tyndall National Institute, University College Cork</s1>
<s3>IRL</s3>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Tyndall National Institute, University College Cork</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0262779</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0262779 INIST</idno>
<idno type="RBID">Pascal:12-0262779</idno>
<idno type="wicri:Area/Main/Corpus">001C21</idno>
<idno type="wicri:Area/Main/Repository">001765</idno>
<idno type="wicri:Area/Russie/Extraction">000039</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0921-4526</idno>
<title level="j" type="abbreviated">Physica, B Condens. matter</title>
<title level="j" type="main">Physica. B, Condensed matter</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electric field effects</term>
<term>Exciton phonon interaction</term>
<term>Excitons</term>
<term>Indium Gallium Arsenides Mixed</term>
<term>Indium arsenides</term>
<term>Magnetic field effects</term>
<term>Photoexcitation</term>
<term>Photoluminescence</term>
<term>Quantum dots</term>
<term>Stranski-Krastanov growth method</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Méthode croissance Stranski-Krastanov</term>
<term>Exciton</term>
<term>Interaction exciton phonon</term>
<term>Effet champ électrique</term>
<term>Effet champ magnétique</term>
<term>Photoexcitation</term>
<term>Indium Gallium Arséniure Mixte</term>
<term>Point quantique</term>
<term>Arséniure d'indium</term>
<term>InGaAs</term>
<term>GaAs</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Optical characterization of single quantum dots (QDs) by means of micro-photoluminescence (μPL) will be reviewed. Both QDs formed in the Stranski-Krastanov mode as well as dots in the apex of pyramidal structures will be presented. For InGaAs/GaAs dots, several excitonic features with different charge states will be demonstrated. By varying the magnitude of an external electric or magnetic field and/or the temperature, it has been demonstrated that the transportation of carriers is affected and accordingly the charge state of a single QD can be tuned. In addition, we have shown that the charge state of the QD can be controlled also by pure optical means, i.e. by altering the photo excitation conditions. Based on the experience of the developed InAs/GaAs QD system, similar methods have been applied on the InGaN/GaN QD system. The coupling of LO phonons to the QD emission is experimentally examined for both charged and neutral excitons in single InGaAs/GaAs QDs in the apex of pyramidal structures. It is shown that the positively charged exciton exhibits a significantly weaker LO phonon coupling in the μPL spectra than the neutral and negatively charged species, a fact, which is in consistency with model simulations performed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0921-4526</s0>
</fA01>
<fA03 i2="1">
<s0>Physica, B Condens. matter</s0>
</fA03>
<fA05>
<s2>407</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical characterization of individual quantum dots</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>SACPM 2011: Proceedings of the 4th South African Conference on Photonic Materials, held in Kariega Game Reserve, South Africa, 2-6 May 2011</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HOLTZ (P. O.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HSU (C. W.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LARSSON (L. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KARLSSON (K. F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DUFAKER (D.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LUNDSKOG (A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>FORSBERG (U.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>JANZEN (E.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>MOSKALENKO (E. S.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>DIMASTRODONATO (V.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>MERENI (L.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>PELUCCHI (E.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>VENTER (Andrè)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>AURET (Danie)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SWART (Hendrik C.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>IFM Material Physics, Linköping University</s1>
<s2>581 83 Linköping</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, Polytechnicheskaya 26</s1>
<s2>194021 Saint Petersburg</s2>
<s3>RUS</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Tyndall National Institute, University College Cork</s1>
<s3>IRL</s3>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Nelson Mandela Metropolitan University</s1>
<s2>Port Elizabeth</s2>
<s3>ZAF</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>University of Pretoria</s1>
<s2>Pretoria</s2>
<s3>ZAF</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>University of the Free State</s1>
<s2>Bloemfontein</s2>
<s3>ZAF</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>Nelson Mandela Metropolitan University (NMMU). Physics Department</s1>
<s2>Port Elizabeth</s2>
<s3>ZAF</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>University of the Free State (UFS). Physics Department</s1>
<s2>Bloemfontein</s2>
<s3>ZAF</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="03" i2="1">
<s1>University of Pretoria. Physics Department</s1>
<s2>Pretoria</s2>
<s3>ZAF</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="04" i2="1">
<s1>South African Institute of Physics (SAIP). Condensed Matter Physics and Materials Specialist (CMPMS) Group</s1>
<s3>ZAF</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>1472-1475</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145B</s2>
<s5>354000509663090040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0262779</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. B, Condensed matter</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Optical characterization of single quantum dots (QDs) by means of micro-photoluminescence (μPL) will be reviewed. Both QDs formed in the Stranski-Krastanov mode as well as dots in the apex of pyramidal structures will be presented. For InGaAs/GaAs dots, several excitonic features with different charge states will be demonstrated. By varying the magnitude of an external electric or magnetic field and/or the temperature, it has been demonstrated that the transportation of carriers is affected and accordingly the charge state of a single QD can be tuned. In addition, we have shown that the charge state of the QD can be controlled also by pure optical means, i.e. by altering the photo excitation conditions. Based on the experience of the developed InAs/GaAs QD system, similar methods have been applied on the InGaN/GaN QD system. The coupling of LO phonons to the QD emission is experimentally examined for both charged and neutral excitons in single InGaAs/GaAs QDs in the apex of pyramidal structures. It is shown that the positively charged exciton exhibits a significantly weaker LO phonon coupling in the μPL spectra than the neutral and negatively charged species, a fact, which is in consistency with model simulations performed.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Méthode croissance Stranski-Krastanov</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Stranski-Krastanov growth method</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Método crecimiento Stranski-Krastanov</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Exciton</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Excitons</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Interaction exciton phonon</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Exciton phonon interaction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Interacción excitón fonón</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Effet champ électrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electric field effects</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Effet champ magnétique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Magnetic field effects</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Photoexcitation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Photoexcitation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Indium Gallium Arséniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Indium Gallium Arsenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fN21>
<s1>198</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>SACPM 2011 South African Conference on Photonic Materials</s1>
<s2>4</s2>
<s3>Kariega Game Reserve ZAF</s3>
<s4>2011-05-02</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000039 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000039 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0262779
   |texte=   Optical characterization of individual quantum dots
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024